Untwisting magnetospheres of neutron stars
نویسنده
چکیده
Magnetospheres of neutron stars are anchored in the rigid crust and can be twisted by sudden crustal motions (“starquakes”). The twisted magnetosphere does not remain static and gradually untwists, dissipating magnetic energy and producing radiation. The equation describing this evolution is derived, and its solutions are presented. Two distinct regions coexist in an untwisting magnetosphere: a potential region where ∇ × B = 0 (“cavity”) and a current-carrying bundle of field lines with ∇ × B 6= 0 (“j-bundle”). The cavity has a sharp boundary, which expands with time and eventually erases all of the twist. In this process, the electric current of the j-bundle is sucked into the star. Observational appearance of the untwisting process is discussed. A hot spot forms at the footprints of the j-bundle. The spot shrinks with time toward the magnetic dipole axis, and its luminosity and temperature gradually decrease. As the j-bundle shrinks, the amplitude of its twist ψ can grow to the maximum possible value ψmax ∼ 1. The strong twist near the dipole axis increases the spindown rate of the star and can generate a broad beam of radio emission. The model explains the puzzling behavior of magnetar XTE J1810-197 — a canonical example of magnetospheric evolution following a starquake. We also discuss implications for other magnetars. The untwisting theory suggests that the nonthermal radiation of magnetars is preferentially generated on a bundle of extended closed field lines near the dipole axis. Subject headings: plasmas — stars: magnetic fields, neutron
منابع مشابه
The Magnetospheres of (Accreting) Neutron Stars Observational Clues
I give an overview of the most important observational tools to study the magnetospheres of accreting neutron stars, with a focus on accreting neutron stars in high mass X-ray binary systems. Topics covered are the different types of accretion onto neutron stars and the structure of the accretion column, and how models for these can be tested with observations.
متن کاملSimulations of axisymmetric magnetospheres of neutron stars
In this paper we present the results of time-dependent simulations of dipolar axisymmetric magnetospheres of neutron stars carried out both within the framework of relativistic magnetohydrodynamics and within the framework of resistive force-free electrodynamics. The results of force-free simulations reveal the inability of our numerical method to accommodate the equatorial current sheets of pu...
متن کاملar X iv : a st ro - p h / 05 11 49 5 v 1 1 6 N ov 2 00 5 1 AN END - TO - END TEST OF NEUTRON STARS AS PARTICLE ACCELERATORS
Combining resolved spectroscopy with deep imaging, XMM-Newton is providing new insights on the particle acceleration processes long known to be at work in the magnetospheres of isolated neutron stars. According to a standard theoretical interpretation, in neutron stars' magnetospheres particles are accelerated along the B field lines and, depending on their charge, they can either move outward,...
متن کاملSpin and Isospin Asymmetry, Equation of State and Neutron Stars
In the present work, we have obtained the equation of state for neutron star matter considering the in uence of the ferromagnetic and antiferromagnetic spin state. We have also investigated the structure of neutron stars. According to our results, the spin asymmetry stiens the equation of state and leads to high mass for the neutron star.
متن کاملDifferent Magnetic Field Distributions in Deformed Neutron Stars
In this work, we review the formalism which would allow us to model magnetically deformed neutron stars. We study the effect of different magnetic field configurations on the equation of state (EoS) and the structure of such stars. For this aim, the EoS of magnetars is acquired by using the lowest order constraint variational (LOCV) method and employing the AV18 potential....
متن کامل